PART A: Answer only three of the four questions below.

A 1 Show that if \(G \) is a non-abelian simple subgroup of \(S_n \) then \(G \) is contained in \(A_n \).

A 2 Let \(R \) be a commutative ring with 1 in which every ideal is prime. Prove that \(R \) is a field.

A 3 Let \(R \) be a ring and \(f : \mathbb{Q} \to R \) and \(g : \mathbb{Q} \to R \) be ring homomorphisms. Show that if \(f|_\mathbb{Z} = g|_\mathbb{Z} \) then \(f = g \).

A 4 Let \(W \) be the space of \(n \times n \)-matrices over a field \(F \) and let \(f \) be a linear functional on \(W \) such that \(f(AB) = f(BA) \) for every \(A, B \in W \). Show that \(f \) is a multiple of the trace functional.

PART B: Answer only three of the four questions below.

B 1 Let \((M,d)\) be a metric space, \(A \subset M \) be nonempty, \(x \in A \), and \(B(x,r) = \{y \in M : d(x,y) < r\} \) for every \(r > 0 \). Prove or disprove each of the following statements.
 (a) If \(A \) is closed and \(A \subset B(x,r) \) for some \(r > 0 \), then \(A \) is compact.
 (b) If \(A \) is compact, then \(A \) is closed and \(A \subset B(x,r) \) for some \(r > 0 \).

B 2 Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire function (i.e., \(f \) is analytic on the whole complex plane).
 (a) Suppose \(f \) is bounded by a constant \(M \) on the circle \(\{z \in \mathbb{C} : |z| = R\} \) for some \(R > 0 \). Prove that the coefficients \(C_k \) in the power series expansion of \(f \) about 0 satisfy
 \[|C_k| \leq \frac{M}{R^k}. \]
 (b) Suppose there exist real constants \(A, B \) and an integer \(n \geq 0 \) such that \(|f(z)| \leq A + B|z|^n \) for every \(z \in \mathbb{C} \). Prove that \(f \) is a polynomial of degree at most \(n \). (Hint: Use part (a).)

B 3 Let \(m \) denote the Lebesgue measure on the real line, \(f : \mathbb{R} \to \mathbb{R} \) be an integrable function and \(F(x) = \int_{-\infty}^{x} f \, dm \) for every \(x \in \mathbb{R} \). Prove or disprove each of the following statements. Indicate the theorems you use (if any).
 (a) \(F \) is continuous at every \(x \in \mathbb{R} \).
 (b) \(F \) is differentiable at every \(x \in \mathbb{R} \).
 (c) \(F \) is differentiable at \(\mu \)-a.e. \(x \in \mathbb{R} \).

B 4 Let \((X,\mathcal{F},\mu)\) be a measure space and \((f_n)_{n \geq 1} \) be a sequence of real-valued measurable functions on \(X \). Prove or disprove each of the following statements.
 (a) If \(f_n \to 0 \) in \(\mu \)-measure, then \(f_n \to 0 \) \(\mu \)-a.e.
 (b) If \(f_n \to 0 \) \(\mu \)-a.e., then \(f_n \to 0 \) in \(\mu \)-measure.
 (c) If \(\mu(X) < \infty \) and \(f_n \to 0 \) \(\mu \)-a.e., then \(f_n \to 0 \) in \(\mu \)-measure.